Abstract

BackgroundThe cerebral microvascular occlusion elicits microvascular injury which mimics the different degrees of stroke severity observed in patients, but the mechanisms underlying these embolic injuries are far from understood. The Fas ligand (FasL)-Fas system has been implicated in a number of pathogenic states. Here, we examined the contribution of microglia-derived FasL to brain inflammatory injury, with a focus on the potential to suppress the FasL increase by inhibition of the P2X7-FasL signaling with pharmacological or genetic approaches during ischemia.MethodsThe cerebral microvascular occlusion was induced by microsphere injection in experimental animals. Morphological changes in microglial cells were studied immunohistochemically. The biochemical analyses were used to examine the intracellular changes of P2X7/FasL signaling. The BV-2 cells and primary microglia from mice genetically deficient in P2X7 were used to further establish a linkage between microglia activation and FasL overproduction.ResultsThe FasL expression was continuously elevated and was spatiotemporally related to microglia activation following microsphere embolism. Notably, P2X7 expression concomitantly increased in microglia and presented a distribution pattern that was similar to that of FasL in ED1-positive cells at pathological process of microsphere embolism. Interestingly, FasL generation in cultured microglia cells subjected to oxygen-glucose deprivation-treated neuron-conditioned medium was prevented by the silencing of P2X7. Furthermore, FasL induced the migration of BV-2 microglia, whereas the neutralization of FasL with a blocking antibody was highly effective in inhibiting ischemia-induced microglial mobility. Similar results were observed in primary microglia from wild-type mice or mice genetically deficient in P2X7. Finally, the degrees of FasL overproduction and neuronal death were consistently reduced in P2X7−/− mice compared with wild-type littermates following microsphere embolism insult.ConclusionFasL functions as a key component of an immunoreactive response loop by recruiting microglia to the lesion sites through a P2X7-dependent mechanism. The specific modulation of P2X7/FasL signaling and aberrant microglial activation could provide therapeutic benefits in acute and subacute phase of cerebral microembolic injury.

Highlights

  • Epidemiological and clinical evidence has indicated that cerebral microvascular occlusion is a common phenomenon throughout life, which might require better understanding as a mechanism of ischemic insult and subsequent neuronal damage [1,2,3]

  • Further increases in Fas ligand (FasL) were evident after 168 h in the rats with microsphere embolism compared with the sham rats (348.1 ± 35.4% vs. sham, P

  • We found that FasL was rapidly elevated in response to oxygen-glucose deprivation (OGD)-treated cell-free conditioned medium (OCM) in the cultured BV-2 (Figure 4A) and peaked at 6 h after treatment

Read more

Summary

Introduction

Epidemiological and clinical evidence has indicated that cerebral microvascular occlusion is a common phenomenon throughout life, which might require better understanding as a mechanism of ischemic insult and subsequent neuronal damage [1,2,3]. No link between brain inflammatory response and cerebral microvascular occlusion has been studied far. By contrast, depending on the cell type and its state, FasL-Fas system has been shown to be instructive signal for ongoing and injury-induced brain regeneration [10]. Despite the autocrine action of FasL that has been shown in vascular smooth muscle cells [14], epithelial cells [15], lymphocytes [16], and intestinal cells [17], little is known about its effects on microglia or its possible role in brain microembolic injury. We examined the contribution of microglia-derived FasL to brain inflammatory injury, with a focus on the potential to suppress the FasL increase by inhibition of the P2X7-FasL signaling with pharmacological or genetic approaches during ischemia

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call