Abstract

We previously demonstrated that P2X7 receptors (P2X7Rs) expressed by cultured mouse astrocytes were activated without any exogenous stimuli, but its roles in non-stimulated resting astrocytes remained unknown. It has been reported that astrocytes exhibit engulfing activity, and that the basal activity of P2X7Rs regulates the phagocytic activity of macrophages. In this study, therefore, we investigated whether P2X7Rs regulate the engulfing activity of mouse astrocytes. Uptake of non-opsonized beads by resting astrocytes derived from ddY-mouse cortex time-dependently increased, and the uptaken beads were detected in the intracellular space. The bead uptake was inhibited by cytochalasin D (CytD), an F-actin polymerization inhibitor, and agonists and antagonists of P2X7Rs apparently decreased the uptake. Spontaneous YO-PRO-1 uptake by ddY-mouse astrocytes was reduced by the agonists and antagonists of P2X7Rs, but not by CytD. Down-regulation of P2X7Rs using siRNA decreased the bead uptake by ddY-mouse astrocytes. In addition, compared to in the case of ddY-mouse astrocytes, SJL-mouse astrocytes exhibited higher YO-PRO-1 uptake activity, and their bead uptake was significantly greater. These findings suggest that resting astrocytes exhibit engulfing activity and that the activity is regulated, at least in part, by their P2X7Rs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.