Abstract

It has been shown that spinal microglia expressing certain types of glutamate transporters function in the modulation of neuropathogenesis. In this study, the effect of ATP, potentially able to mediate the communication between neurons and glial cells in the spinal cord on the transport of glutamate in cultured spinal microglia, was investigated. Both GLAST and GLT-1 were detected in the cells. Preincubation with ATP or 2'-3'-O-(4-benzoyl-benzoyl) ATP (BzATP), a selective agonist for the P2X(7) receptor, significantly blocked the uptake of glutamate. The effect of BzATP was reversed by pretreatment with brilliant blue G or oxidized ATP, each a selective antagonist for P2X(7). The inhibitory effect of P2X(7) receptor activation also occurred in the absence of extracellular Na(+) or Ca(2+), suggesting that the receptor regulates glutamate transport by a metabotropic pathway. Furthermore, pretreatment with inhibitors of mitogen-activated protein kinase kinase, or antioxidants, significantly reversed the inhibitory effect of BzATP on the uptake of glutamate. Incubation with BzATP led to a marked decrease in the V(max), but not the K(m), of glutamate transport. However, treatment with BzATP did not induce the trafficking of glutamate transporters. These results suggest that the activation of P2X(7) receptors in spinal microglia is important in the regulation of glutamate transport via activation of the extracellular signal-regulated kinase cascade and production of oxidants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.