Abstract

The concept of Internet of Multimedia Things (IoMT) is becoming popular nowadays and can be used in various smart city applications, e.g., traffic management, healthcare, and surveillance. In the IoMT, the devices, e.g., Multimedia Sensor Nodes (MSNs), are capable of generating both multimedia and non-multimedia data. The generated data are forwarded to a cloud server via a Base Station (BS). However, it is possible that the Internet connection between the BS and the cloud server may be temporarily down. The limited computational resources restrict the MSNs from holding the captured data for a longer time. In this situation, mobile sinks can be utilized to collect data from MSNs and upload to the cloud server. However, this data collection may create privacy issues, such as revealing identities and location information of MSNs. Therefore, there is a need to preserve the privacy of MSNs during mobile data collection. In this paper, we propose an efficient privacy-preserving-based data collection and analysis (P2DCA) framework for IoMT applications. The proposed framework partitions an underlying wireless multimedia sensor network into multiple clusters. Each cluster is represented by a Cluster Head (CH). The CHs are responsible to protect the privacy of member MSNs through data and location coordinates aggregation. Later, the aggregated multimedia data are analyzed on the cloud server using a counter-propagation artificial neural network to extract meaningful information through segmentation. Experimental results show that the proposed framework outperforms the existing privacy-preserving schemes, and can be used to collect multimedia data in various IoMT applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.