Abstract
Due to transport phenomena, analyte adsorption on the detector surface can be hindered, which increases the detection limit. Therefore, this work aims the simulation, production and tests of a simple miniaturized structure that favors mixing on detector surfaces. The conception of the manufactured device is based on passive mixers. Mixing is improved by changing the surfaces properties of plasma deposited thin films. Hexamethyldisilazane (HMDS) and nonafluoro(iso)butyl ether (HFE) and codeposited HMDS/HFE plasma films were modified by ultraviolet (UVC) or beta radiation exposure (electron beam, 2 MeV, from 10 nA to 100 nA). Silicon, acrylics and piezoelectric quartz crystal (PQC) were used as substrates. Film characterization used profilemeter for thickness and ellipsometer for refractive index determinations; Raman, infrared (FTIR) and x-ray photoelectron (XPS) spectroscopies determined chemical composition. Optical, scanning electron (SEM) and atomic force (AFM) microscopies evaluated the film resistance toward ultraviolet light or beta radiation and cluster formation; cluster size were estimated using ImageJ software. Contact angle measurements tested hydrophobicity and the adsorption of volatile organic compounds (VOCs). Simulations of detector surfaces (based on PQC detection) and respective package used FEMLAB 3.2 software. All films are hydrophobic and adsorbent, even after exposition to ultraviolet radiation. HMDS films exposed to ultraviolet form a silicone-like structure whereas beta radiation exposure leads to carbon nodules formation. HFE films act as passive layer, even for beta radiation. Best design for surface modification has approximately a sinoidal shape.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.