Abstract

The majority of activated T lymphocytes undergo cell death at the end of a primary immune response, while a minority survive as memory cells. The mechanisms that control the decision between these two fates are unknown. In the present study we examined the response of activated T cells to interleukin-2 (IL-2) withdrawal. Within hours, the percentage of T lymphocytes in cell cycle showed a steady decrease, while the percentage arrested in G1 increased proportionally. Deprivation of IL-2 resulted in upregulation of the cell cycle inhibitor p27kip1. Comparison with resting T-cell populations revealed that the highest expression of p27kip1 occurs in activated T cells undergoing cell cycle arrest following IL-2 withdrawal. T cells deficient in p27kip1 expression showed an impaired ability to undergo cell cycle arrest in response to IL-2 deprivation. Moreover, T cells deficient in p27kip1 showed significantly more apoptosis after IL-2 withdrawal. Collectively, this study demonstrates that p27kip1 regulates both the cell cycle arrest and the apoptosis of antigen-specific T lymphocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call