Abstract
p27(Kip1) (p27) acts as a tumor suppressor by inhibiting cyclin-cyclin-dependent kinase (cyclin-CDK) activity. However, mice expressing a form of p27 that is unable to bind or inhibit cyclin-CDK complexes (p27(CK-)) have increased incidence of tumor development as compared with wild-type and p27(-/-) mice, revealing an oncogenic role for p27. Here, we identified a phenotype of multinucleation and polyploidy in p27(CK-) mice not present in p27(-/-) animals, suggesting a role for p27 in G2/M that is independent of cyclin-CDK regulation. Further analysis revealed that p27(CK-) expression caused a cytokinesis and abscission defect in mouse embryonic fibroblasts. We identified the Rho effector citron kinase (citron-K) as a p27-interacting protein in vitro and in vivo and found that p27 and citron-K colocalized at the contractile ring and mid-body during telophase and cytokinesis. Moreover, overexpression of the minimal p27-binding domain of citron-K was sufficient to rescue the phenotype caused by p27(CK-). Conversely, expression of a mutant p27(CK-) unable to bind citron-K did not induce multinucleation. Finally, by binding to citron-K, p27 prevented the interaction of citron-K with its activator RhoA. Taken together, these data suggest a role for p27 during cytokinesis via the regulation of citron-K activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.