Abstract

BackgroundIt has been reported that p27Kip1 plays an important role not only in the inhibition of cyclin-dependent kinases but also in the regulation of autophagy under various metabolically related stress conditions, including glucose deprivation and endoplasmic reticulum stress. However, its effect on lipopolysaccharide (LPS)-induced cardiomyocyte stress in vitro remains unclear. Here, we measured the increased expression of LC3-II and visualized autophagosomes in vitro by immunofluorescent assays after treatment with a p27 fusion protein.Material/MethodsCardiomyocyte contractile properties were assessed by measuring cell shortening and re-lengthening. Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Western blot, colorectal ligation puncture (CLP) surgery, silencing of Atg5 expression by small interfering RNA (siRNA), and immunofluorescent assays were also performed in this study.ResultsAfter exogenous delivery of the p27 fusion protein and overexpression of p27 in LPS-induced cardiomyocytes, we found lower expressions of caspase-3 and caspase-8 and reduced positive TUNEL staining. Improved cardiomyocyte mechanical functions and reduced apoptosis were diminished after treatment with various autophagy inhibitors. Intravenous injections of p27-expressing adeno-associated virus serotype 9 (AAV9) vectors resulted in cardiac specific overexpression of p27, and echocardiography was used to assess cardiac function and structure in sepsis rat models. We observed improved cardiac function and reversed adverse ventricular remolding after the introduction of AAV9 vectors. Meanwhile, apoptosis was reduced, and expression of LC3-II was elevated in septic rat models treated with AAV9 vectors compared to controls.ConclusionsThe study data demonstrated that the overexpression of p27 protects cardiomyocytes from sepsis-induced cardiac depression via the activation of autophagy and inhibition of apoptosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.