Abstract
Phosphorylation of the cyclin-dependent kinase inhibitor p27 by upstream mitogenic signaling pathways regulates its stability, localization, and biological function. In human cancers, loss of the antiproliferative action of p27 can arise through reduced protein levels and/or cytoplasmic mislocalization, leading to increased cell proliferation and/or cell migration, respectively. Reduced p27 expression levels and p27 mislocalization have potential prognostic and therapeutic implications in various types of human cancers. This review highlights mechanisms of functional deregulation of p27 by oncogenic signaling that provide an important molecular rationale for pathway targeting in cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.