Abstract

P25/graphene nanocomposites were successful synthesized in a water-ethanol solvent under hydrothermal conditions. During the process of the reduction of GO into graphene (GR), the P25 nanoparticles were decorated on graphene sheets simultaneously. Moreover, the GR content in the as-synthesized nanocomposites can be easily adjusted by changing the dosage of P25. The interesting P25/GR nanocomposites were found to be a promising anode material for lithium-ion batteries and showed significantly enhanced Li-ion insertion/extraction performance. The optimal weight percentage of GR was found to be 29.9%, which resulted in a high capacity of 282.8 mAh g−1 after 50 cycles at a current rate of 0.5 C. The improved capacity may be attributed to the synergetic effect between graphene sheets and P25 nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call