Abstract

Purpose: Several studies suggest that radiofrequency electromagnetic field (RF-EMF) exposure can induce neuronal injury. The aim of the present work was to investigate whether the cyclin-dependent kinase 5 (CDK5) pathway is involved in neuronal injury induced by RF-EMF exposure.Materials and methods: Newborn Sprague-Dawley rats’ primary cultured cortical neurons were exposed to pulsed 2.45 GHz RF-EMF for 10 min. The cellular viability was assessed using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The apoptosis was assessed by Hoechst 33342 and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling co-staining. The protein expressions of CDK5, p35, p25, and phosphorylated tau at Ser404 were examined by Western blot analysis. The CDK5 activity was detected using a histone-H1 kinase assay.Results: The cellular viability of neurons was significantly decreased (p < 0.01, Partial Eta Squared [ηp2]: 0.554), and the percentage of apoptotic nuclei (p < 0.01, ηp2 = 0.689), activity of CDK5 (p < 0.05, ηp2 = 0.589), ratio of p25 and p35 (p < 0.05, ηp2 = 0.670), levels of tau phosphorylation at Ser404 (p < 0.01, ηp2 = 0.896) were significantly increased after RF-EMF exposure. No significant change was detected in CDK5 expression after RF-EMF exposure. Pretreatment with Roscovitine (a CDK5 inhibitor) significantly blocked the RF-EMF-induced decrease of cellular viability (p < 0.05, ηp2 = 0.398) and tau hyperphosphorylation at Ser404 (p < 0.01, ηp2 = 0.917), but did not significantly block the RF-EMF-induced apoptosis (p > 0.05, ηp2 = 0.130).Conclusions: These results suggest that abnormal activity of p25/CDK5 is partially involved in primary cultured cortical neuron injury induced by RF-EMF exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.