Abstract
Lithium ion batteries have dominated the world of portable electronic devices over the past two decades and are making their way into the electric vehicle market due to their high energy density. However, recently sodium ion batteries have regained the interest of the scientific community due to the high and uniform abundance of sodium across the world and consequent low cost compared to lithium, making them attractive for grid storage. Various electrode materials have been studied for sodium ion batteries. Layered oxides, NaMO2, where M is one or more transition metals, represent an attractive class of cathodes for Na batteries. Here we show that Na0.67MnO2 with the P2 structure, Figure 1 a), exhibits a high capacity (175 mAhg-1), close to the best reported for a Na cathode, and with good capacity retention, in contrast to previous studies of Na0.67MnO2 where the capacity faded rapidly. [1] Due to the presence of Jahn–Teller active Mn3+ in Na0.67MnO2, the structure undergoes various structural transitions during sodiation/desodiation leading to many voltage steps in the charge/discharge profile. [2], [3] We have investigated reducing the phase transitions by substituting Mn3+ ions with electrochemically inactive dopant ions, which have a strong preference for octahedral sites in the layered oxide framework. This leads to the formation of a highly stable framework that shows a smooth charge/discharge profile with very low polarization even for a substitution level as low as 5%, Figure 1 b) and a capacity of ~ 175 mAhg-1. Such an observation is significant for the future development of sodium ion battery cathode materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.