Abstract
Skeletal development and bone remodeling depend on the coordinated activity of osteoblasts and osteoclasts, which are responsible for bone formation and resorption, respectively. Mature osteoclasts result from the fusion of precursor cells, and they are large, multinucleated, highly specialized cells. Cellular release of ATP and UTP occurs in response to a variety of stimuli including mechanical stimulation, which occurs in the bone environment. ATP and UTP or their metabolites can then act on P2 receptors in the plasma membrane to induce various responses in bone cells. The influence of these receptors on osteoclast physiology and bone physiology in general is beginning to be understood, but much work is still required. This review focuses on P2 receptors in osteoclasts, their expression, signaling and function in the regulation of osteoclast formation, resorptive activity and survival.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.