Abstract

Hypofunction of the N-methyl-d-aspartic acid receptor (NMDAr) has been considered to play a crucial role in the pathophysiology of schizophrenia. In rodent electroencephalogram (EEG) studies, non-competitive NMDAr antagonists have been reported to produce aberrant basal gamma band oscillation (GBO), as observed in schizophrenia. Aberrations in GBO power have attracted attention as a translational biomarker for the development of novel antipsychotic drugs. However, the neuronal mechanisms as well as the pharmacological significance of NMDAr antagonist-induced aberrant GBO power have not been fully investigated. In the present study, to address the above questions, we examined the pharmacological properties of MK-801 (0.1 mg/kg)-increased basal GBO power in rat cortical EEG. Riluzole (3–10 mg/kg), a glutamate release inhibitor, reduced the MK-801-increased basal GBO power. In contrast, L-838,417 (1–3 mg/kg), an α2/3/5 subunit-selective GABAA receptor-positive allosteric modulator, enhanced the GBO increase. Antipsychotics such as haloperidol (0.05–0.3 mg/kg) and clozapine (1–10 mg/kg) dose-dependently attenuated the MK-801-increased GBO power. Likewise, LY379268 (0.3–3 mg/kg), an metabotropic glutamate 2/3 receptor (mGlu2/3 receptor) agonist, reduced the GBO increase in a dose-dependent manner, which was antagonized by an mGlu2/3 receptor antagonist LY341495. These results suggest that an increase in cortical GBO power induced by NMDAr hypofunction can be attributed to the aberrant activities of both excitatory pyramidal neurons and inhibitory interneurons in local circuits. The aberrant cortical GBO power reflecting cortical network dysfunction observed in schizophrenia might be a useful biomarker for the discovery of novel antipsychotic drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call