Abstract
The pharmacological and neuroprotective properties of two ester analogs of the endocannabinoids, arachidonoylethyleneglycol (AA-EG) and α,α,-dimethyl arachidonoylethyleneglycol (DMA-EG), were investigated. We examined the interaction of both compounds with cannabinoid receptors (CB1 and CB2) and their efficacy in functional assays. In competition binding assays, AA-EG and DMA-EG had low potency to displace the CB1/CB2 agonist [3H]CP-55,940 in membrane preparations expressing rodent or human receptors. Binding data correlate with low efficacy of both compounds as regards to inhibition of adenylyl cyclase activity. It was also shown that DMA-EG resists hydrolysis by rat brain membranes while AA-EG undergo complete splitting under these conditions. In the cannabinoid tetrad, AA-EG induced hypomotility, analgesia, catalepsy and decreased rectal temperature indicating cannabimimetic activity. By contrast, DMA-EG was completely inactive in the same models. DMA-EG and AA-EG potently protected rat cortical neurons in culture against oxygen deprivation at nanomolar concentrations. In glutamate-induced damage, the compounds were less active protecting neurons at micromolar concentrations. The data obtained indicate that the ester endocannabinoid template can be used for the development of new compounds with potent biological activity lacking some of the undesirable behavioral side effects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.