Abstract

To counteract the immune system in parasitic hosts, some viruses encode proteins to suppress the RNA interference (RNAi) effect. In this report, we established two RNAi systems to be easily observed with strong and obvious effect. The function of the P19 of tomato bushy stunt virus, which suppresses RNAi in mammal cells, was then studied using these two systems. Short hairpin RNAs targeting green fluorescence protein (pshRNA-GFP) and firefly luciferase (pshRNA-luc) were designed and inserted into a eukaryotic transcriptional vector pTZU6+1, respectively. The shRNA expressing vectors were co-transfected with plasmids containing the target gene with or without P19. The GFP expression level was assayed by fluorescence microscopy, Western blotting and RT-PCR. The luciferase expression level was analyzed by the dual-luciferase assay system. pshRNA designed in this study down-regulated the target gene specifically and efficiently, with a decrease of expression of both genes of about 70%, respectively. When P19 was introduced into the RNAi systems, the expression of both GFP and the luciferase were mostly recovered compared with the control groups. The RNAi systems of GFP and luciferase were constructed successfully, demonstrating that P19 of tomato bushy stunt virus has the ability to counteract the RNAi effect induced by shRNA in mammal cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call