Abstract

Abstract BACKGROUND Chromatin structure is often dysregulated in cancers, including glioblastoma (GBM), the most aggressive type of primary brain tumor. GBM has the poorest prognosis with no efficient cure to date due to diffusive growth into the brain, resistance to treatments and the immunosuppressive tumor microenvironment (TME). The growth and invasiveness of GBM is supported by the heterogeneous TME including local microglia and bone-marrow-derived macrophages (collectively known as glioma-associated microglia and macrophages, GAMs). In addition, tumor hypoxia is a key factor in the progression of GBM, as it can globally and rapidly alter gene expression, induce cancer cell invasiveness, stemness and lead to therapy resistance. Hypoxia can influence the pro-tumorigenic function of GAMs by inducing the expression of cytokines and cell surface receptors. However, little is known on the hypoxia-imposed chromatin changes of GAMs and GBM cells, which can in turn impact the interaction between these cell populations. Here we analyze these changes using a single-cell method, which preserves in situ hypoxia within the TME of GBM. MATERIAL AND METHODS Single-cell Pi-ATAC-seq (Protein-indexed Assay of Transposase Accessible Chromatin with sequencing) method in a GL261 murine glioma model was used to simultaneously assess genome-wide chromatin accessibility and expression of intracellular protein markers in single cells, enabling accurate selection of hypoxic and non-hypoxic tumor cells and GAMs. Pi-ATAC-seq is used on paraformaldehyde-perfused tumors and therefore allows capturing unaltered hypoxia-dependent cellular states, that often become distorted during dissociation and preparation of fresh material in most common single-cell methods. RESULTS We optimized Pi-ATAC method in a GL261 GBM mouse model, with specific sorting of GAMs using CD11b+ immunosorting followed by separation of microglia and macrophages, based on intensity of CD45 staining. HIF-1α induction and binding of pimonidazole were used to mark hypoxic populations. Currently, we are investigating the chromatin accessibility profiles of cancer cells and GAMs within the hypoxic tumor microenvironment of GBM. Exploring open chromatin profiles in GAMs and glioma-microglia co-cultures will allow to unravel the mechanisms of chromatin accessibility modulation in the oxygen-dependent manner. CONCLUSION In summary, we optimized the Pi-ATAC method in a mouse GBM model to characterize the chromatin openness changes in GAMs and cancer cells in response to hypoxic stress. Further validation of these results will provide the potential to identify novel markers for GAMs/glioma interactions in hypoxic GBMs and develop novel therapeutic targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call