Abstract

Abstract Introduction In human heart failure, electrical remodeling contributes to the risk of arrhythmia generation. Increased expression of Ca/Calmodulin-dependent protein kinase IIδ (CaMKIIδ) and an enhanced persistent Na current (INaL) have been linked to arrhythmogenesis. CaMKIIδ increases INaL via regulation of sodium channels thereby contributing to arrhythmias through early- and delayed-afterdepolarizations (EADs and DADs). Genome-wide association studies (GWAS) have described the implication of the neuronal sodium channel isoform NaV1.8 (SCN10A) in cardiac electrophysiology showing modulation in cardiac conduction. We showed that the expression of the isoform Nav1.8 is significantly increased in human failing cardiomyocytes and contributes substantially to the enhanced INaL. Purpose We investigated a potential interaction of CaMKIIδ and NaV1.8 and thereby its role in arrhythmia generation and electrophysiology in human and murine failing hearts. Methods Cardiomyocytes were isolated from explanted failing hearts and CaMKIIδ transgenic (TG) mice. We performed immunostainings and co-immunoprecipitation (Co-IP) to show interactions of CaMKIIδ and Nav1.8 in isolated cardiomyocytes and homogenates. Whole-cell patch clamp experiments were conducted in isolated human and murine ventricular cardiomyocytes. Additionally, Ca2+ transients were measured using epifluorescence microscopy with the Ca2+ dye fura-2 (10μmol/L) whereas Ca2+ sparks measurements were performed by using confocal microscopy with the Ca2+ dye fluo-4 (10μmol/L). PF-01247324 is a novel specific NaV1.8 inhibitor (orally bioavailable; 1 μmol/L) and autocamtide inhibitory peptide (AIP, 1 μmol/L) was used to inhibit CaMKIIδ. Results Co-immunoprecipitation experiments revealed an association of CaMKIIδ and Nav1.8 in human homogenates compared to healthy controls. Furthermore, immunohistochemistry stainings in isolated human cardiomyocytes showed a co-localization of CaMKIIδ and NaV1.8 at the intercalated disc and t-tubules. We observed a significant reduction of INaL integral and proarrhythmic SR-Ca2+ spark frequency (CaSpF) after addition of either PF-01247324 or the CaMKIIδ inhibitor AIP in failing human and murine ventricular cardiomyocytes. When PF-01247324 and AIP were added together, the decrease in INaL integral and CaSpF was comparable to PF-01247324 alone in human failing cardiomyocytes. Inhibition of NaV1.8 did not show an effect on Ca2+ transient amplitude or Ca2+ transient decay at different stimulation frequencies in CaMKIIδ TG cardiomyocytes. Conclusion Our results demonstrate the significance of both CaMKIIδ and NaV1.8 in INaL generation and their detrimental interaction. This data suggest that increased CaMKIIδ activity plays a substantial role for the activation of NaV1.8-mediated late sodium current and SR-Ca2+ leak.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.