Abstract

Abstract BACKGROUND Positron emission tomography (PET) is important in noninvasive diagnostic imaging of gliomas. There are many PET studies on glioma diagnosis based on the 2007 World Health Organization (WHO) classification; however, there are no studies on glioma diagnosis using the new classification (the 2016 WHO classification).Here we investigated the relationship between PET imaging using 11C-methionine (MET), 11C-choline (CHO), and 18F-fluorodeoxyglucose (FDG) and wildtype isocitrate dehydrogenase (IDH) (IDH-wt)/mutant IDH (IDH-mut) in astrocytic and oligodendroglial tumors according to the 2016 WHO classification. MATERIAL AND METHODS In total, 105 patients with newly diagnosed cerebral gliomas (six diffuse astrocytomas [DAs] with IDH-wt, six DAs with IDH-mut, seven anaplastic astrocytomas [AAs] with IDH-wt, 24 AAs with IDH-mut, 26 glioblastomas [GBMs] with IDH-wt, five GBMs with IDH-mut, 19 oligodendrogliomas [ODs], and 12 anaplastic oligodendrogliomas [AOs]) were included. All OD and AO patients had both IDH-mut and 1p/19q codeletion. The maximum standardized uptake values (SUVs) of the tumor/normal cortex mean SUV ratios (T/N ratios) for MET, CHO, and FDG were calculated; the mean T/N ratios of DA, AA, and GBM with IDH-wt/IDH-mut were compared. The diagnostic accuracy for distinguishing gliomas with IDH-wt from those with IDH-mut was assessed using receiver operating characteristic (ROC) curve analysis of the mean T/N ratios for the three PET tracers. RESULTS There were significant differences in the mean T/N ratios for all three PET tracers between the IDH-wt and IDH-mut groups including all histological classifications (p<0.001). Among the 27 gliomas with mean T/N ratios higher than the cutoff values for all three PET tracers, 23 (85.2%) were classified into the IDH-wt group using ROC analysis. In DA, there were no significant differences in the T/N ratios for MET, CHO, and FDG between the IDH-wt and IDH-mut groups. In AA, the mean T/N ratios of all three PET tracers in the IDH-wt group were significantly higher than those in the IDH-mut group (p<0.001). In GBM, the mean T/N ratio in the IDH-wt group was significantly higher than that of the IDH-mut group for both MET (p=0.034) and CHO (p=0.01). However, there was no significant difference in the ratio for FDG. CONCLUSIONS PET imaging using MET, CHO, and FDG was confirmed to be informative for preoperatively differentiating gliomas according to the 2016 WHO classification, particularly for differentiating IDH-wt and IDH-mut tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.