Abstract

Pancreatic cancer is associated with the worst 5-year survival rate of any human cancer. This high mortality is due, in part, to difficulties in establishing early and accurate diagnosis. Because most tumours share the ability to accumulate amino acids more effectively than normal tissues and any other pathology, assessment of amino acid transport in tumour cells using radiolabelled amino acids has become one of the most promising tools for tumour imaging. This study investigated the potential of p-[(123)I]iodo-L-phenylalanine (IPA) for detection of pancreatic cancer by single-photon emission tomography. IPA affinity for pancreatic tumour was investigated in human pancreatic adenocarcinoma PaCa44 and PanC1 cells, followed by analysis of the underlying mechanisms of tracer accumulation in neoplastic cells. Thereafter, IPA was evaluated for targeting of pancreatic tumours using SCID mice engrafted with primary human pancreatic adenocarcinoma cells, as well as in acute inflammation models in immunocompetent mice and rats. IPA accumulated intensively in human pancreatic tumour cells. Radioactivity accumulation in tumour cells following a 30-min incubation at 37 degrees C/pH 7.4 varied from 41% to 58% of the total loaded activity per 10(6) cells. The cellular uptake was temperature and pH dependent and predominantly mediated by specific carriers for neutral amino acids, namely the sodium-independent and L-leucine-preferring (L-system) transporter and the alanine-, serine- and cysteine-preferring (ASC-system) transporter. Protein incorporation was less than 8%. Biodistribution studies showed rapid localization of the tracer to tumours, reaching 10%+/-2.5% to 15%+/-3% of the injected dose per gram (I.D./g) in heterotopic tumours compared with 17%+/-3.5% to 22%+/-4.3% I.D./g in the orthotopic tumours, at 60 and 240 min post injection of IPA, respectively. In contrast, IPA uptake in the gastrointestinal tract and areas of inflammation remained moderate and decreased with time. Excellent tumour detection was obtained by gamma camera imaging. The specific and high-level targeting of IPA to tumour and the negligible uptake in the gastrointestinal tract and areas of inflammation indicate that p-[(123)I]iodo-L-phenylalanine is a promising tracer for differential diagnosis of pancreatic cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.