Abstract

In this study, hierarchical titanium dioxide (TiO2) microspheres with controlled morphology derived from calcination treatment of hierarchical titanate microspheres were fabricated. The obtained hierarchical TiO2 microspheres with diameters of 1 to 2 µm were composed of polycrystalline anatase nanosheets with thickness of 10 nm. The morphology was manipulated by simply adjusting the molar ratio of tetrabutyl titanate/P123. At a low molar ratio of 17.04, TiO2 microspheres composed of a large number of nanosheets closely packed together were obtained. At a high molar ratio of 34.08, TiO2 hybrid architectures with polycrystalline anatase hierarchical microspheres and single-crystal anatase mesoporous (approximately 5 nm) nanospheres were obtained. Investigations on evolution formation revealed that P123 played a key role in the formation of a well-defined hierarchical structure. The photocatalytic performances of the obtained samples were investigated by the degradation of methylene blue and papermaking wastewater. When compared with commercial P25, the obtained hierarchical TiO2 microspheres exhibit superior photocatalytic activity, high degradation efficiency, and good reproducibility. The product with hybrid architectures exhibited the highest photocatalytic activity. The chemical oxygen demand and the chroma removal rate of papermaking wastewater achieved 85.5 and 100%, respectively, after 12 h of photodegradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.