Abstract

Abstract Background and Aims PD-fluids lead to generation of reactive oxygen species (ROS) in the peritoneal cavity. The caused oxidative stress, defined as a cellular oxidant-antioxidant imbalance impairs not only peritoneal cell viability but also contributes to progression of local and systemic PD-related pathomechanisms. We aim to analyze the impact and specific targets of ROS during PD and the anti-oxidative mechanism of supplementation of PD-fluid with alanyl-glutamine (AlaGln) on a global proteome-wide level. Method To establish a redox-proteomics workflow for studying oxidative stress in peritoneal mesothelial cells we used a gold-standard model of redox-stress (H2O2) and PD-fluid induced stress. Levels of oxidative stress were first validated by increased intracellular ROS and superoxide dismutase activity with PD-fluid and H2O2 treatment and a reduction of these parameters by the addition of AlaGln. To detect alterations of the redox proteome, cysteine residues were either directly or indirectly labeled with fluorescent dyes (redox-2D-DiGE) or isobaric tags (iodo-TMT). Results: The gel-based approach allowed global visualization of the reduced and oxidized cysteines and revealed redox profiles of 540 protein spots. Compared to control, we found an increase in oxidized and decrease in reduced cysteines in all PD treatments. The development of a highly sensitive LC/MS-based redox proteomics workflow allowed identification of ∼950 proteins affected by redox-stress in mesothelial cells and confirmed the quantitative levels seen on cysteine oxidation. The addition of AlaGln reduced the overall redox status (intracellular ROS and superoxide dismutase activity) but further showed different proteins to be affected by redox modifications. Conclusion: Redox proteomics of peritoneal cells could represent a novel approach for the identification of mediators of PD-induced pathomechanisms, but also to evaluate effects of novel anti-oxidant therapeutical or pharmacological interventions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call