Abstract

Abstract Background and Aims Interleukin (IL)-34, a macrophage (Mø) mediator, is expressed by tubular epithelial cells (TECs). However, the influence of IL-34 on TECs injury has not been fully elucidated. We investigated the physiological properties of IL-34 on TECs damage caused by cisplatin-nephrotoxicity (CP-N). Method 7-week-old male C57BL/6 (B6) mice (n=16) were fasted for 8 hours and then induced CP-N by intraperitoneal injection (IP) of CP (25 mg/kg) on day 0. Groups of animals were given either anti-mouse IL-34 antibody (CP+anti-IL-34 Ab, 400 ng/kg, n=8) or vehicle (CP+V, equal volume of saline, n=8) daily by IP from day -1 to day 2. Three age-matched male B6 mice were used as normal control (NC). All mice were sacrificed on day 3. In addition, mouse renal proximal TECs (MRTEpiC) were cultured to analyze the inhibitory effects of IL-34 on CP-induced TEC apoptosis. Cells were stimulated with CP (2 μg/mL), then treated with or without anti-IL-34 Ab (1000 pg/mL). Results Compared to the NC, CP+V mice exhibited marked acute kidney injury (AKI) and upregulated expression of IL-34 and its two receptors, cFMS and PTP-ζ. Compared to the vehicle treatment, anti-IL-34 Ab treatment significantly suppressed the intrarenal expression levels of IL-34 and its two receptors in CP-N mice; it also significantly suppressed serum IL-34 levels (72.1 ± 5.6 vs. 40.4 ± 7.5 pg/mL, p=0.013). Additionally, treatment with anti-IL-34 Ab significantly improved serum Cr levels (1.3 ± 0.2 vs. 0.7 ± 0.1 mg/mL, p=0.033), ameliorated tubulointerstitial injury (numbers of casts/HPF: 11.9 ± 2.6 vs. 6.5 ± 1.8, p=0.048), and suppressed the number of F4/80+ Mø (17.5 ± 2.7 vs. 11.1 ± 1.1/HPF, p=0.041) and TUNEL+ apoptotic cells (29.2 ± 4.9 vs. 16.7 ± 2.7/HPF, p=0.036) in CP-N mice. The renal cortical transcript levels of Kim-1, MIP-1/CCL3, TNF-α, and Bax were significantly lower in the CP+anti-IL-34 Ab mice than in the CP+V mice. Furthermore, the CP+anti-IL-34 Ab mice showed significantly less renal infiltration of CD11b+F4/80+TNF-α+ cells. In vitro, stimulation with CP induced the expression of IL-34 and its two receptors in MRTEpiC. Treatment with anti-IL-34 Ab significantly suppressed CP-induced caspase-3 and Bax expression with degradation of ERK1/2 phosphorylation in the damaged MRTEpiC. Conclusion IL-34 secreted from damaged TECs was involved in the progression of CP-N. Inhibition of IL-34 with neutralizing antibody directly prevented CP-induced TEC apoptosis by inhibiting the phosphorylation of ERK1/2. Blocking of IL-34 might suppressed proliferation of cytotoxic Mø, which indirectly led to the attenuation of CP-N. Thus, IL-34 represents a potential as therapeutic target for AKI with TECs injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.