Abstract

We analyze the vertex-coloring problem restricted to planar graphs and propose to consider classic wheels and polyhedral wheels as basic patterns for the planar graphs. We analyze the colorability of the composition among wheels and introduce a novel algorithm based on three rules for the vertex-coloring problem. These rules are: 1) Selecting vertices in the frontier. 2) Processing subsumed wheels. 3) Processing centers of the remaining wheels. Our method forms a maximal independent set S1 ⊂ V (G) consisting of wheel's centers, and a maximum number of vertices in the frontier of the planar graph. Thus, we show that if the resulting graph G′ = (G − S1) is 3-colorable, then this implies the existence of a valid 4-coloring for G.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.