Abstract

Adipose-derived stem cells (ASCs) hold promise for bone regeneration but possess inferior osteogenesis potential. Allotransplantation of ASCs engineered with the BMP2/VEGF-expressing baculoviruses into rabbits healed critical-size segmental bone defects. To translate the technology to clinical applications, we aimed to demonstrate massive bone healing in minipigs that more closely mimicked the clinical scenarios, using a new hybrid baculovirus system consisting of BacFLPo expressing the codon-optimized FLP recombinase (FLPo) and the substrate baculovirus harboring the transgene flanked by Frt sequences. Co-transduction of minipig ASCs (pASCs) with BacFLPo and the substrate baculovirus enabled transgene cassette excision, recombination and minicircle formation in ≈73.7% of pASCs, which substantially prolonged the transgene (BMP2 and VEGF) expression to 28 days. When encoding BMP2, the FLPo/Frt-based system augmented the pASCs osteogenesis. Allotransplantation of the BMP2/VEGF-expressing pASCs into minipigs healed massive segmental bone defects (30 mm in length) at the mid-diaphysis of femora, as evaluated by computed tomography, positron emission tomography, histology, immunohistochemical staining and biochemical testing. The defect size was ≈15% of femoral length in minipigs and was equivalent to ≈60–70 mm of femoral defect in humans, thus the healing using pASCs engineered with the FLPo/Frt-based baculovirus represented a remarkable advance for the treatment of massive bone defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.