Abstract

IntroductionThe CES-D scale is commonly used to assess depressive symptoms (DS) in large population-based studies. Missing values in items of the scale may create biases.ObjectivesTo explore reasons for not completing items of the CES-D scale and to perform sensitivity analysis of the prevalence of DS to assess the impact of different missing data hypotheses.Methods71412 women included in the French E3N cohort returned in 2005 a questionnaire containing the CES-D scale. 45% presented at least one missing value in the scale. An interview study was carried out on a random sample of 204 participants to examine the different hypotheses for the missing value mechanism. The prevalence of DS was estimated according to different methods for handling missing values: complete cases analysis, single imputation, multiple imputation under MAR (missing at random) and MNAR (missing not at random) assumptions.ResultsThe interviews showed that participants were not embarrassed to fill in questions about DS. Potential reasons of nonresponse were identified. MAR and MNAR hypotheses remained plausible and were explored.Among complete responders, the prevalence of DS was 26.1%. After multiple imputation under MAR assumption, it was 28.6%, 29.8% and 31.7% among women presenting up to 4, to 10 and to 20 missing values, respectively. The estimates were robust after applying various scenarios of MNAR data for the sensitivity analysis.ConclusionsThe CES-D scale can easily be used to assess DS in large cohorts. Multiple imputation under MAR assumption allows to reliably handle missing values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.