Abstract

Abstract Background and Aims Knowledge about genetic causes of chronic kidney disease (CKD) is one of the key gaps in global kidney research and recent International Society of Nephrology recommendations encourage the adoption of genetic testing to enable a goal of providing precision medicine based on individual risk (1). A recent whole-exome sequencing study showed that genetic inheritance may be responsible for up to 10% of CKD diagnoses, many of which may be previously undiagnosed or mis-diagnosed (2). Continued advances in DNA sequencing technology have made genetic testing, even whole-exome sequencing, applicable to routine clinical diagnoses. In order to test the hypothesis that genetic testing can provide valuable information to increase the accuracy and precision of diagnosis in CKD, we designed a gene panel to prospectively provide genetic testing in a subset of patients with CKD defined by a specific set of inclusion criteria. Method Reata Pharmaceuticals is partnering with Invitae on a program called KidneyCode, which provides no-charge genetic testing to enable diagnosis of three specific rare monogenic causes of CKD: Alport syndrome (AS), autosomal dominant polycystic kidney disease (ADPKD) due to PKD2 mutations, and focal segmental glomerulosclerosis (FSGS), as well as detection of variants in one of the autosomal recessive polycystic kidney disease gene, PKHD1. Invitae’s renal disease panel includes 17 genes (ACTN4, ANLN, CD2AP, COL4A3, COL4A4, COL4A5, CRB2, HNF1A, INF2, LMX1B, MYO1E, NPHS1, NPHS2, PAX2, PKD2, PKHD1, and TRPC6), and its assay includes both full-gene sequencing and intragenic deletion/duplication analysis using next-generation sequencing (NGS). The assay targets the coding exons and flanking 10bp of intronic sequences. Invitae’s method of variant classification uses a systematic process for assessing evidence based on guidelines published by the American College of Medical Genetics (3). Patients in the US at risk for hereditary CKD (eGFR ≤ 90 mL/min/1.73m2 plus hematuria or a family history of CKD) or with a known diagnosis of AS or FSGS are eligible. Family members of those with suspected or known AS or FSGS are also eligible. All participants in the KidneyCode program have access to genetic counseling follow-up at no additional charge. Results In the first five months of the KidneyCode program, 152 genetic tests have been completed. A genetic variant was reported in 87 patients. Of those 87 patients, 67 patients had 75 variants in COL4A3, 4, or 5 genes (34 Pathogenic/Likely Pathogenic (P/LP), 41 Variants of Uncertain Significance (VUS)), 20 patients had 24 variants in genes associated with FSGS (3 P/LP, 21 VUS), 15 patients had 20 variants in PKHD1 (1 P/LP, 19 VUS), and 2 patients had variants in PKD2 (1 P/LP, 1 VUS). Of the 34 patients with Pathogenic or Likely Pathogenic COL4A variants, 19 reported a previous diagnosis of Alport syndrome. Other diagnoses in patients with COL4A mutations included FSGS, thin basement membrane disease, and familial hematuria. Extra-renal manifestations such as hearing loss and eye disease were reported in 7 of the 34 patients with COL4A variants. Conclusion Initial results with the KidneyCode panel demonstrate the utility of NGS and support the hypothesis that combining genetic testing with clinical presentation and medical history can significantly improve accuracy and precision of diagnosis in patients with hereditary CKD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call