Abstract

SUMMARY The presence of anisotropy requires that tomographic methods be generalized to account for anisotropy. This generalization allows geological structure to be correctly imaged and allows the anisotropic parameters to be estimated. Use of isotropic inversion for imaging anisotropic structures gives systematic trends in the traveltime and polarization residuals. However, due to the limited directional coverage, the traveltimes along may not be sufficient to study the anisotropic properties of the structure. Polarizations can provide independent information on the structure. Traveltime and polarization inversion are applied to synthetic examples simulating VSP experiments. Transverse isotropy and 1-D structure are assumed. Plots of traveltime and polarization residuals are an important tool to detect the anomalies due to the presence of anisotropy. For receivers located in anisotropic layers, polarization residuals display consistent anomalies of several degrees. The synthetic examples show that even the simple 1-D problem is difficult, when using direct arrivals only. Large a posteriori errors in anisotropic parameters are obtained by traveltime inversion in layers where available incidence angles are less than 45°. Resolution of the tomographic image of VSP data is greatly improved by a combination of traveltime and polarization information. In order to obtain accurate inversion results, the measurement error of polarization data should be kept to within a few degrees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call