Abstract

An ultrasonic p -wave reflection imaging system is used to noninvasively image submerged soil models with embedded anomalies and complex geometric layer contacts. The ultrasonic transducers emit compressive waves into water that subsequently transmit into the underlying soil, and measurements of the reflections are used to construct the images. The properties of the transducers and data acquisition hardware and software are explained. Fast signal stacking is used to improve signal-to-noise ratio and provide clearer images. Transducer directivity is explained as a wave passage effect, and transfer functions are derived for square and circular transducers to quantify directivity. The transfer functions agree reasonably with measured amplitude data. The cause of errors in the imaged position of dipping reflectors is explained, and a Kirchhoff migration algorithm is implemented to correct these errors. A soil model consisting of embedded high- and low-impedance anomalies, dipping soil layer contacts, and an u...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.