Abstract
We study a spin-polarized degenerate Fermi gas interacting via a p-wave Feshbach resonance in an optical lattice. The strong confinement available in this system allows us to realize one- and two-dimensional gases and, therefore, to restrict the asymptotic scattering states of atomic collisions. When aligning the atomic spins along (or perpendicular to) the axis of motion in a one-dimensional gas, scattering into channels with the projection of the angular momentum of /m/ = 1 (or m = 0) can be inhibited. In two and three dimensions, we observe the doublet structure of the p-wave Feshbach resonance. For both the one-dimensional and the two-dimensional gases, we find a shift of the position of the resonance with increasing confinement due to the change in collisional energy. In a three-dimensional optical lattice, the losses on the Feshbach resonance are completely suppressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.