Abstract

AbstractThis paper presents a p‐version geometrically non‐linear formulation based on the total Lagrangian approach for a nine node three dimensional curved shell element. The element geometry is defined by the coordinates of the nodes located on its middle surface and nodal vectors describing the bottom and top surfaces of the element. The element displacement approximation can be of arbitrary and different polynomial orders in the plane of the element and in the transverse direction. The element approximation functions and the corresponding nodal variables are derived from the Lagrange family of interpolation functions. The resulting approximation functions and the nodal variables are hierarchical and the element displacement approximation ensures C° continuity.The element properties are established using the principle of virtual work and the hierarchical element approximation. In formulating the properties of the element complete three dimensional stresses and strains are considered, hence the element is equally effective for very thin as well as extremely thick shells and plates.Incremental equations of equilibrium are derived and solved using the standard Newton–Raphson method. The total load is divided into increments, and for each increment of load, equilibrium iterations are performed until each component of the residuals is within a preset tolerance. Numerical examples are presented to show the accuracy, efficiency and advantages of the present formulation. The results obtained from the present formulation are compared with those available in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.