Abstract

p‐Type redox‐active organic materials (ROMs) draw increasing attention as a promising alternative to conventional inorganic electrode materials in secondary batteries due to high redox voltage, fast rate capability, environment friendliness, and abundance. First, fundamental properties of the p‐type ROMs regarding the energy levels and the anion‐related chemistry are briefly introduced. Then, the development progress of the p‐type ROMs is outlined in this review by classifying them according to their redox centers. The molecular design strategies employed for improving their electrochemical performance are discussed to guide further research. Finally, a summary of the electrochemical performance achieved, regarding voltage, specific energy with power, and cycle stability, is provided with perspectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.