Abstract

Metabasites exposed in far-eastern Nepal provide an important insight into the metamorphic evolution of the Himalayan orogen independent from data obtained on metapelites. The P–T conditions and formation process of mafic granulite intercalated within Early Oligocene migmatites and two amphibolites surrounded by Early Miocene metapelites were inferred from pseudosection modeling and conventional geothermobarometry combined with the occurrences of field and microstructures. A mafic granulite in the Higher Himalaya Crystalline Sequence (HHCS) yields P–T conditions of 6.5–8 kbar, 730–750 °C. The similar peak P–T condition and retrograde path with low P/T gradient of mafic granulite and surrounding migmatite indicate that both rocks were simultaneously metamorphosed and exhumed together along the tectonic discontinuities in the HHCS. In contrast, the P–T conditions (2–5 kbar, 500–600 °C) of highly-deformed amphibolite block above the Main Central Thrust (MCT) records significantly lower pressure than garnet-mica gneisses in the country rock, suggesting that the amphibolite block derived from upper unit of the MCT zone and became tectonically mixed with the gneisses of hanging wall near the surface. An amphibolite lense below the MCT preserves the prograde P–T conditions (6–7.5 kbar, 550–590 °C) of Early Miocene syn-tectonic metamorphism that occurred in the MCT zone. This study indicates the top-to-the south movement of the MCT zone results in the tectonic assembly of rocks with different P–T–t conditions near the MCT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call