Abstract
Membrane computing is a computational model based on activity of cells. Using the membrane computing, a number of computationally hard problems have been solved in a polynomial number of steps using an exponential number of membranes. However, the number of membranes denotes the number of cells from practical point of view, and the reduction of the number of membranes must be considered for using the membrane computing in real world. In this paper, we propose asynchronous P systems with branch and bound for reducing the number of membranes for two computationally hard graph problems. We first propose an asynchronous P system that solves Hamiltonian cycle problem for a graph with n vertices, and show that the proposed P system works in O(n^2) parallel steps. We next propose an asynchronous P system that solves the minimum graph coloring for a graph with n vertices, and also show that the P system works in O(n^2) parallel steps. In addition, we evaluate validity of the proposed P systems using computational simulations. The experimental results show the validity and efficiency of the proposed P systems with branch and bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.