Abstract

In inflammation, activated neutrophils adhere to endothelial cells and aggregate with one another. While beta 2-integrin and L-selectin are essential for aggregation, their ligands remain to be identified. We have previously shown that L-selectin mediates a carbohydrate-dependent interaction in aggregation (Simon et al: J Immunol 149:2765, 1992; Rochon et al: J Immunol 152:1385, 1994). We have suggested that the L-selectin counter-structure is a mucinlike protein and proposed that aggregation occurs through a two-step process involving L-selectin, beta 2-integrin, and their distinct counter-structures (Bennett et al: J Leuk Biol 58:510, 1995). A candidate ligand for L-selectin is P-selectin glycoprotein ligand-1 (PSGL-1), a mucinlike protein on neutrophils that binds P-and E-selectin. Using flow cytometry we show that the number and size of neutrophil aggregates is reduced with Fab fragments of PL1, an anti-PSGL-1 monoclonal antibody that blocks the interaction between P-selectin and PSGL-1 (Moore et al: J Cell Biol 128:661, 1995). In addition, monoclonal antibodies to L-selectin and PSGL-1 were used simultaneously to modulate the availability of these adhesion molecules on individual cell populations. The inhibition of aggregation by these antibodies is consistent with L-selectin and PSGL-1 being counter-structures. We suggest that L-selectin and PSGL-1 support a collisional cell-cell interaction that represents the first step in neutrophil aggregation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.