Abstract

In this paper, an efficient thin-film nanocomposite (TFN) membrane was synthesized by interfacial polymerization and used for water desalination. Piperazine (PIP) and trimesoyl chloride were used as monomers, and p-phenylenediamine-grafted multi-walled carbon nanotube (p-PDA-MWCNT) was used as a hydrophilic modifier to enhance the performance of the polysulfone nanofiltration membrane. In order to characterize the synthesized p-PDA-MWCNTs, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and electron-dispersive spectroscopy were used. In order to enhance the performance of the membrane, different concentrations of p-PDA-MWCNTs (0.01, 0.02, 0.04, 0.05 and 0.075 wt%) were added to the PIP solution to prepare p-PDA-MWCNTs-embedded membranes. To check the performance of the modified membrane, solutions of 1000 mg L−1 Na2SO4, MgSO4, NaCl and CaCl2 were tested. The results show that TFN-modified membrane provides excellent water permeability and also salt rejection in the presence of 0.02 wt% p-PDA-MWCNTs which shows superior improvement in TFN membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.