Abstract
The nontarget effects, in terms of biochemical changes induced by p-nitrophenol (PNP) in three soil microalgae, Chlorella sp., Chlorococcum sp., and Heterochlamydomonas sp., and the PNP removal efficiency of these isolates, were determined. On exposure to 20 mg L(-1) PNP, Chlorella sp. showed greater activity of peroxidase, superoxide dismutase, and glutathione reductase as well as high contents of proline and carotenoids. While Heterochlamydomonas sp. exhibited higher levels of catalase and protein, Chlorococcum sp. produced greater amounts of malondialdehyde, a measure of lipid peroxidation, in the presence of PNP. Chlorella sp. tolerated PNP by producing large quantities of antioxidants coupled with less lipid peroxidation, while Chlorococcum sp. was susceptible, as evidenced by low antioxidant production and high lipid peroxidation. During 7-d exposure, Chlorella sp., Heterochlamydomonas sp., and Chlorococcum sp. were able to remove 39, 18, and 4% of 20 mg L(-1) PNP, respectively. The present results indicate that proline, carotenoids and malondialdehyde are the potential biomarkers for assessing PNP toxicity toward microalgae, and their response could be considered for differentiating tolerant and susceptible strains. Moreover, there is a clear correlation between PNP removal and antioxidant synthesis in microalgae on exposure to the pollutant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.