Abstract

In this work, we report on the impedance of p-n junction-based Si biochips with gold ring top electrodes and unstructured platinum bottom electrodes which allows for counting target biomaterial in a liquid-filled ring top electrode region. The systematic experiments on p-n junction-based Si biochips fabricated by two different sets of implantation parameters (i.e. biochips PS5 and BS5) are studied, and the comparable significant change of impedance characteristics in the biochips in dependence on the number of bacteria suspension, i.e., Lysinibacillus sphaericus JG-A12, in Deionized water with an optical density at 600 nm from OD600 = 4–16 in the electrode ring region is demonstrated. Furthermore, with the help of the newly developed two-phase electrode structure, the modeled capacitance and resistance parameters of the electrical equivalent circuit describing the p-n junction-based biochips depend linearly on the number of bacteria in the ring top electrode region, which successfully proves the potential performance of p-n junction-based Si biochips in observing the bacterial suspension. The proposed p-n junction-based biochips reveal perspective applications in medicine and biology for diagnosis, monitoring, management, and treatment of diseases.

Highlights

  • Biochips [1], as one of the most advancing technologies in the biomedical field, have attracted lots of attention in the past decades due to their promising functionalities, e.g., for the detection and recognition of biomaterial in a considerable wide range [2]

  • The miniaturized p-n junction-based Si biochips are proposed with well-defined gold ring top electrodes and unstructured platinum bottom electrodes, which offer the advantages for sensing the biomaterial such as cost-effectiveness and high portability

  • More significant changes from the impedance characteristics of BS5 after adding additional 1 μL–5 μL bacteria (Figure 5b) can be detected than in the case after adding additional 1–5 μL DI water (Figure 5a), which is consistent to the biochip PS5. These results successfully proved that biochips PS5 and BS5 can be used to detect adhesion of Lysinibacillus sphaericus JG-A12 in the ring top electrode region

Read more

Summary

Introduction

Biochips [1], as one of the most advancing technologies in the biomedical field, have attracted lots of attention in the past decades due to their promising functionalities, e.g., for the detection and recognition of biomaterial in a considerable wide range [2]. In the application field of microbiology, in comparison to optical microscopy, the biochips can prevent human errors and offer faster and easier functional operation as lab measurement tools for biosensing purposes. The biochips can be helpful for the disease diagnosis with high reliability and time efficiency. The miniaturized p-n junction-based Si biochips are proposed with well-defined gold ring top electrodes and unstructured platinum bottom electrodes, which offer the advantages for sensing the biomaterial such as cost-effectiveness and high portability. The impedance spectroscopy (ImS) [4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call