Abstract
Palladium-catalyzed coupling reactions of small nucleophiles are of great interest, but challenging due to difficulties in selectivity control. Herein, we report the development of a new platform of P,N-ligands consisting of ylide-functionalized phosphines with aminophosphonium groups (NYPhos) to address this challenge. These phosphine ligands are easily accessible in a wide structural diversity with highly modular electronic and steric properties. Based on a family of 14 ligands the selective monoarylation of acetone as well as other challenging ketones and amides was accomplished with record-setting activities even for aryl chlorides at room temperature including late-stage functionalizations of drug molecules. Moreover, ammonia and other small primary amines could be coupled at mild conditions. Isolation and structure analyses of palladium complexes within the catalytic cycle confirmed that the P,N-coordination mode is necessary to achieve the observed selectivities. It also demonstrated the facile adjustability of the N-donor strength, which is beneficial for the targeted design of tailored P,N-ligands for future applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.