Abstract

The pursuit of cholesterol lowering natural products with less side effects is needed for controlling dyslipidemia and reducing the increasing toll of cardiovascular diseases that are associated with morbidity and mortality worldwide. The present study aimed at the examining effects of p-methoxycinnamic acid diesters (PCO-C) from carnauba (Copernicia prunifera)-derived wax on cytotoxic, genotoxic responses in vitro and on dyslipidemia and liver oxidative stress in vivo, utilizing high-fat diet (HFD) chronically fed Swiss mice. In addition, we evaluated the effect of PCO-C on the expression of key cholesterol metabolism-related genes, as well as the structural interactions between PCO-C and lecithin-cholesterol acyl transferase (LCAT) in silico. Oral treatment with PCO-C was able to reduce total serum cholesterol and low-density lipoprotein (LDL) levels following HFD. In addition, PCO-C reduced excessive weight gain and lipid peroxidation, and increased the gene expression of LCAT following HFD. Furthermore, the high affinity of the studied compound (ΔG: −8.78 Kcal/mol) towards the active sites of mutant LCAT owing to hydrophobic and van der Waals interactions was confirmed using bioinformatics. PCO-C showed no evidence of renal and hepatic toxicity, unlike simvastatin, that elevated aspartate aminotransferase (AST) levels, a marker of liver dysfunction. Finally, PCO-C showed no cytotoxicity or genotoxicity towards human peripheral blood lymphocytes in vitro. Our results suggest that PCO-C exerts hypocholesterolemic effects. The safety of PCO-C in the toxicological tests performed and the reports of its beneficial biological effects render this a promising compound for the development of new cholesterol-lowering therapeutics to control dyslipidemia. More work is needed for further elucidating PCO-C role on lipid metabolism to support future clinical studies.

Highlights

  • Cardiovascular diseases (CVDs) prevail as a leading cause of death worldwide, mostly due to an imbalance in plasma lipids levels, especially when associated with other risk factors [1].High levels of total blood cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG), as well as low levels of high-density lipoprotein cholesterol (HDL-C), characterize dyslipidemia

  • Our data suggest that PCO-C shows no cytotoxic effect against human peripheral blood lymphocytes (HPBLs)

  • The alkaline comet assay and the micronucleus test showed no genotoxic activity in Human Peripheral Blood Lymphocytes (HPBLs) and mice, both in vitro and in vivo

Read more

Summary

Introduction

High levels of total blood cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG), as well as low levels of high-density lipoprotein cholesterol (HDL-C), characterize dyslipidemia. All together, these factors increase the risk of life-threatening cardiovascular diseases and stroke [2,3]. The increasing contribution of medicinal plants and their metabolites to advance cardiovascular disease therapeutics has become even more significant recently. Such metabolites are distinguished by their direct or indirect actions through the activation or inhibition of molecular and cellular targets

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call