Abstract

The orbit method of Kirillov is used to derive the p-mechanical brackets [math-ph/0007030, quant-ph/0212101]. They generate the quantum (Moyal) and classic (Poisson) brackets on respective orbits corresponding to representations of the Heisenberg group. The extension of p-mechanics to field theory is made through the De Donder--Weyl Hamiltonian formulation. The principal step is the substitution of the Heisenberg group with Galilean. Keywords: Classic and quantum mechanics, Moyal brackets, Poisson brackets, commutator, Heisenberg group, orbit method, deformation quantisation, representation theory, De Donder--Weyl field theory, Galilean group, Clifford algebra, conformal M\"obius transformation, Dirac operator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.