Abstract

In [J. Amer. Math. Soc. 5 (1992) 805–851] Stanley introduced the concept of a P-kernel for any locally finite partially ordered set P. In [Proc. Sympos. Pure Math., Vol. 56, AMS, 1994, pp. 135–148] Du introduced, for any set P, the concept of an IC basis. The purpose of this article is to show that, under some mild hypotheses, these two concepts are equivalent, and to characterize, for a given Coxeter group W, partially ordered by Bruhat order, the W-kernel corresponding to the Kazhdan–Lusztig basis of the Hecke algebra of W. Finally, we show that this W-kernel factorizes as a product of other W-kernels, and that these provide a solution to the Yang–Baxter equations for W.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.