Abstract

The effects of P doping on the nanocrystalline formation in mixed-phase Si:H thin films were investigated using secondary-ion mass spectrometry, Raman spectroscopy, atomic force microscopy, cross-sectional transmission electron microscopy, and scanning Kelvin probe microscopy. We found that Si nanocrystallites in the intrinsic and weakly P-doped materials aggregate to form cone-shaped structures. The local workfunction of the nanocrystalline aggregation areas is larger than the surrounding amorphous areas. Increasing the P-doping level requires an increased hydrogen dilution to reach the similar Raman crystallinity. The nanocrystalline aggregation disappears in the heavily P-doped materials, but isolated nancrystallites appear. The effect of P-doping on the nanostructure is explained with the coverage of P-related radicals on the existing nanocrystalline surface during the deposition and the P segregation in grain boundaries, which prevent new nucleation on the surface of existing nanocrystallites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.