Abstract
In this paper, we study the connectedness at infinity of complete submanifolds by using the theory of p-harmonic function. For lower-dimensional cases, we prove that if M is a complete orientable noncompact hypersurface in \(\mathbb {R}^{n+1}\) and if \(\delta \)-stability inequality holds on M, then M has only one p-nonparabolic end. It is also proved that if \(M^n\) is a complete noncompact submanifold in \({\mathbb {R}}^{n+k}\) with sufficiently small \(L^n\) norm of the traceless second fundamental form, then M has only one p-nonparabolic end. Moreover, we obtain a lower bound of the fundamental tone of the p Laplace operator on complete submanifolds in a Riemannian manifold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.