Abstract

A major impediment for cancer chemotherapy is the development of multidrug-resistance (MDR). Continuous use of chemotherapeutic drugs during cancer therapy induces the expression of PGlycoprotein (P-gp, MDR1), an ATP dependant transporter, which in turn reduces the intracellular accumulation of chemotherapeutic drugs leading to MDR. Extensive research over the years has identified several potential P-gp inhibitors, both synthetic as well as natural origin, to overcome the MDR during cancer chemotherapy. In this review, we discuss the cellular pathways involved and transcription factors regulating the expression of P-gp. A number of phytochemicals are reported to inhibit P-gp activity and MDR1 expression; the structure-activity relationship (SAR) among the phytochemicals for P-gp inhibition and the effect of these phytochemicals on cellular signaling pathways regulating P-gp expression are discussed in detail. Moreover, structural biology and mutagenesis studies on P-gp along with docking studies throw light on the structural requirements for P-gp inhibition. Insight provided in the review about the phytochemicals molecular mechanism and SAR could catalyze the design of potent P-gp inhibitors in the future and could help to overcome MDR in cancer chemotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call