Abstract
The human efflux transporter P-glycoprotein (P-gp, MDR1) functions as an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure assessment because of their use as both pesticides and drugs. Propiconazole is an agricultural pesticide undergoing evaluation by the U.S. Environmental Protection Agency’s Endocrine Disruptor Screening Program. In this study, the P-gp interaction of propiconazole and its hydroxylated metabolites were evaluated using MDR1-expressing membrane vesicles and NIH-3T3/MDR1 cells. Membrane vesicle assays demonstrated propiconazole (IC50,122.9μM) and its metabolites (IC50s, 350.8μM, 366.4μM, and 456.3μM) inhibited P-gp efflux of a probe substrate, with propiconazole demonstrating the strongest interaction. P-gp mediated transport of propiconazole in MDR1-expressed vesicles was not detected indicating propiconazole interacts with P-gp as an inhibitor rather than a substrate. In NIH-3T3/MDR1 cells, propiconazole (1 and 10μM) led to decreased cellular resistance (chemosensitization) to paclitaxel, a chemotherapeutic drug and known MDR1 substrate. Collectively, these results have pharmacokinetic and risk assessment implications as P-gp interaction may influence pesticide toxicity and the potential for pesticide–drug interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.