Abstract

1. Transepithelial transport of a fluorescent derivative of octreotide (NBD-octreotide) was studied in freshly isolated, functionally intact renal proximal tubules from killifish (Fundulus heteroclitus). 2. Drug accumulation in the tubular lumen was visualized by means of confocal microscopy and was measured by image analysis. Secretion of NBD-octreotide into the tubular lumen was demonstrated and exhibited the all characteristics of specific and energy-dependent transport. Steady state luminal fluorescence averaged about five times cellular fluorescence and was reduced to cellular levels when metabolism was inhibited by NaCN. 3. NBD-octreotide secretion was inhibited in a concentration-dependent manner by unlabelled octreotide, verapamil and leukotriene C(4) (LTC(4)). Conversely, unlabelled octreotide reduced in a concentration dependent manner the p-glycoprotein (Pgp)-mediated secretion of a fluorescent cyclosporin A derivative (NBDL-CS) and the mrp2-mediated secretion of fluorescein methotrexate (FL-MTX). 4. This inhibition was not due to impaired metabolism or toxicity since octreotide had no influence on the active transport of fluorescein (FL), a substrate for the classical renal organic anion transport system. 5. The data are consistent with octreotide being transported across the brush border membrane of proximal kidney tubules by both Pgp and mrp2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.