Abstract
A generalization of gauge theory in which the gauge potential1-form is replaced by a p-form is studied. Charged particles are then replaced by elementary extended objects of dimension p−1. It is shown that this extension is compatible with space-time locality only if the gauge group is U(1). A source which is a closed p−1 surface has zero total charge and corresponds to a particle-antiparticle pair. Its quantum rate of production in an external uniform field is evaluated semiclassically. The analog of the Dirac magnetic pole is constructed. It is another extended object, of dimension n−p−3, where n is the dimension of space-time. The “electric” and “magnetic” charges obey the Dirac quantization condition. This condition is derived in two different ways. One method makes use of local gauge patches and the other brings in singular gauge transformations. A topological mass term is introduced and it is shown that it can coexist with a magnetic pole when n=2p+1, provided the topological mass is quantized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.