Abstract

Two-dimensional (2D) molybdenum sulfide (MoS2) is considered as a promising catalyst for hydrogen evolution reaction (HER), originated from its abundant hydrogen evolution active sites. However, the HER performance of MoS2 is currently hindered by the limited exposed density of the active sites and low conductivity. Herein, we report a facile and scalable electrospinning technique to fabricate 2D MoS2 nanoplates doped with phosphorus within one-dimensional nitrogen doped-carbon nanofibers (NCNFs-MoS2|P) as a highly efficient HER catalyst. The space-confined growth with the presence of NCNFs avoided the stacking and aggregation of the MoS2 nanoplates, resulting in more exposed edge sites. The introduction of phosphorus atoms further activated the surface of MoS2 and enhanced the electron transfer. The overpotential of NCNFs-MoS2|P reached 98 mV at 10 mA cm−2, exhibiting excellent HER catalytic activity. Besides, almost no decay was observed after the stability test (5000 cycles or 20 h). The density functional calculations (DFT) elucidated that the incorporation of phosphorus atoms significantly improved the electrical conductivity and decreased the H adsorption energy barrier on MoS2, leading to a high catalytic performance of NCNFs-MoS2|P.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call