Abstract

Photocatalytic water splitting over semiconductors is an important approach to solve the energy demand of human beings. Most photocatalytic H2 generation reactions are conducted in the presence of sacrificial agent. However, the use of sacrificial reagents increases the cost of hydrogen generation. Realizing photocatalytic water splitting for hydrogen production without the addition of sacrificial agents is a major challenge for photocatalysts. The porphyrin MTCPPOMe and P doped MnxCd1-xS make a significant contribution in facilitating the MnxCd1-xS photocatalytic pure water splitting to H2 reaction. Herein, a novel MTCPPOMe/P-MnxCd1-xS (M = 2H, Fe, Co, Ni) composite catalyst which can efficiently split pure water without using sacrificial agents is developed. As a result, the H2 generation rate of CoTCPPOMe/P-Mn0.5Cd0.5S is as high as 2.10 μmol h−1, which is 9.1 and 4.2 times higher than that of Mn0.5Cd0.5S (MCS) and P-Mn0.5Cd0.5S (P-MCS), respectively. P doped MnxCd1-xS inhibits the recombination of photogenerated carriers, and introduction of MTCPPOMe as co-catalyst enhances the reduction capacity. In summary, an efficient and economical photocatalystis prepared for pure water splitting to prepare hydrogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call